Burning phylogenies: fire, molecular evolutionary rates, and diversification.

نویسندگان

  • Miguel Verdú
  • Juli G Pausas
  • José Gabriel Segarra-Moragues
  • Fernando Ojeda
چکیده

Mediterranean-type ecosystems are among the most remarkable plant biodiversity "hot spots" on the earth, and fire has traditionally been invoked as one of the evolutionary forces explaining this exceptional diversity. In these ecosystems, adult plants of some species are able to survive after fire (resprouters), whereas in other species fire kills the adults and populations are only maintained by an effective post-fire recruitment (seeders). Seeders tend to have shorter generation times than resprouters, particularly under short fire return intervals, thus potentially increasing their molecular evolutionary rates and, ultimately, their diversification. We explored whether seeder lineages actually have higher rates of molecular evolution and diversification than resprouters. Molecular evolutionary rates in different DNA regions were compared in 45 phylogenetically paired congeneric taxa from fire-prone Mediterranean-type ecosystems with contrasting seeder and resprouter life histories. Differential diversification was analyzed with both topological and chronological approaches in five genera (Banksia, Daviesia, Lachnaea, Leucadendron, and Thamnochortus) from two fire-prone regions (Australia and South Africa). We found that seeders had neither higher molecular rates nor higher diversification than resprouters. Such lack of differences in molecular rates between seeders and resprouters-which did not agree with theoretical predictions-may occur if (1) the timing of the switch from seeding to resprouting (or vice versa) occurs near the branch tip, so that most of the branch length evolves under the opposite life-history form; (2) resprouters suffer more somatic mutations and therefore counterbalancing the replication-induced mutations of seeders; and (3) the rate of mutations is not related to shorter generation times because plants do not undergo determinate germ-line replication. The absence of differential diversification is to be expected if seeders and resprouters do not differ from each other in their molecular evolutionary rate, which is the fuel for speciation. Although other factors such as the formation of isolated populations may trigger diversification, we can conclude that fire acting as a throttle for diversification is by no means the rule in fire-prone ecosystems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TESS: Bayesian inference of lineage diversification rates from (incompletely sampled) molecular phylogenies in R

Summary:Many fundamental questions in evolutionary biology entail estimating rates of lineage diversification (speciation – extinction). We develop a flexible Bayesian framework for specifying an effectively infinite array of diversification models—where rates are constant, vary continuously, or change episodically through time—and implement numerical methods to estimate parameters of these mod...

متن کامل

Explosive evolutionary radiations: decreasing speciation or increasing extinction through time?

A common pattern in time-calibrated molecular phylogenies is a signal of rapid diversification early in the history of a radiation. Because the net rate of diversification is the difference between speciation and extinction rates, such "explosive-early" diversification could result either from temporally declining speciation rates or from increasing extinction rates through time. Distinguishing...

متن کامل

LASER: A Maximum Likelihood Toolkit for Detecting Temporal Shifts in Diversification Rates From Molecular Phylogenies

Rates of species origination and extinction can vary over time during evolutionary radiations, and it is possible to reconstruct the history of diversification using molecular phylogenies of extant taxa only. Maximum likelihood methods provide a useful framework for inferring temporal variation in diversification rates. LASER is a package for the R programming environment that implements maximu...

متن کامل

Heritability of extinction rates links diversification patterns in molecular phylogenies and fossils.

Time-calibrated molecular phylogenies provide a valuable window into the tempo and mode of species diversification, especially for the large number of groups that lack adequate fossil records. Molecular phylogenetic data frequently suggest an initial "explosive speciation" phase, leading to widespread speculation that ecological niche-filling processes might govern the dynamics of species diver...

متن کامل

Estimating Speciation and Extinction Rates Using Phylogenies: Development and Implementation of a Probabilistic Model

Abstract Diversification rate, i.e. the speed at which lineages speciate or go extinct, is one of the most important metric in ecology and evolutionary biology. Approaches have been developed to estimate rates of speciation and extinction using the molecular phylogenies of extant species (tree describing the evolutionary relationships among species). The general approach consists in deriving th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Evolution; international journal of organic evolution

دوره 61 9  شماره 

صفحات  -

تاریخ انتشار 2007